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The spectral method of Orszag & Patterson (1972a, b )  is used here to study pressure 
and velocity fluctuations in axisymmetric, homogeneous, incompressible, decaying 
turbulence a t  Reynolds numbers Re, 5 40. In  real space 32s points are treated. The 
return to isotropy is simulated for several different sets of anisotropic Gaussian initial 
conditions. All contributions to the spectral energy balance for the different velocity 
components are shown as a function of time and wavenumber. The return to isotropy 
is effected by the pressure-strain correlation. The rate of return is larger at high than 
at  low wavenumbers. The inertial energy transfer tends to create anisotropy at high 
wavenumbers. This explains the overrelaxation found by Herring (1 974). The pressure 
and the inertial energy transfer are zero initiaIly as the triple correlations are zero for 
the Gaussian initial values. The two transfer terms are independent of each other but 
vary with the same characteristic time scale. The pressure- strain correlation becomes 
small for extremely large anisotropies. This can be explained kinematically. Rotta’s 
(1951) model is approximately valid if the anisotropy is small and if the time scale of 
the mean flow is much larger than 0-2 Lf/v, which is the time scale of the triple correla- 
tions (L, = integral length scale, v = root-mean-square velocity). The value of Rotta’s 
constant is less dependent upon the Reynolds number if‘the pressure-strain correla- 
tion is scaled by v3/L, rather than by the dissipation. Lumley & Khajeh-Nouri’s 
(1974) model can be used to account for the influence of large anisotropies. The effect 
of strain is studied by splitting the total flow field into large- and fine-scale motion. 
The empirical model Qf Naot, Shavit & Wolfshtein (1970) has been confirmed in this 
respect. 

1. Introduction 
The spectra1 method of Orszag & Patterson (1972a, b )  has been used to simulate 

static-pressure and velocity fluctuations in incompressible homogeneous decaying 
turbulence. The method and its results for nearly isotropic turbulence have been 
presented in the companion paper (Schumann & Patterson 1978, hereafter referred 
to as I). The results have shown that the method is reliable for Reynolds numbers 
Re, < 36.t 

t This is confirmed, moreover, by a comparison with the direct-interaction approximation in 
a paper (Schumann & Herring 1976) which has been prepared and published since the first version 
of the present paper was prepared. 
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Our study is concerned with axisymmetric anisotropic cases, for Ghich we in- 
vestigate the return to isotropy effected by the pressure-strain correlation. The 
pressure-strain correlation controls both the relative and the absolute magnitude of 
the Reynolds stresses and is thus one of the most important terms to be approximated 
in Reynolds-stress models of turbulence (see, for example, Reynolds 1976; Hanjali6 
& Launder 1972; Daly 1974; Donaldson 1972; Lumley & Khajeh-Nouri 1974). The 
simplest and most common assumption for this correlation is Rotta’s (1951) ‘return- 
to-isotropy ’ model. 

However, even for homogeneous turbulence, the validity of this model has been 
questioned (Schumann 1975) and the magnitude of the empirical constant c in it is 
very uncertain. Values between 0.5 (Daly 1974) and 8 (Lumley & Khajeh-Nouri 1974) 
have been used even in the more recent literature, mainly because of a gap in experi- 
mental data. Most models are justified indirectly by comparison of their predictions 
for the Reynolds stresses with experiments, a typical comparison being that of 
Champagne, Harris & Corrsin (1970). Except for some measurements in the atmo- 
spheric boundary layer by Elliot (1972)) no direct experimental results for the pressure- 
strain correlation are known. Elliot’s results exhibit large statistical uncertainties, 
moreover. Deardorff (1  974) and Schumann (1 975) studied the pressure-strain correla- 
tion in a planetary boundary layer and in channel flows, respectively, at  high Reynolds 
numbers, using finite-difference simulations for the large-scale motions together with 
some models for the subgrid-scale motions. In  these studies the influence of the 
boundaries, the mean strain and the anisotropy of the length scales have not been 
separated, and their significance with respect to Rotta’s model is therefore question- 
able. 

The most direct investigation of this model has been made recently by Herring 
(1 974) for axisymmetric turbulence using the direct-interaction approximation. He 
studied two forms of Rotta’s return-to-isotropy model, one using E / s  and the other 
Lf/Ea ( E  = energy, E = dissipation, L, = integral length scale) as the characteristic 
time scale. He found that the constant appearing in the second form is less dependent 
upon the initial conditions. One of the most surprising results was his finding of some 
‘overrelaxation’, in that after some time the deviation from isotropy a t  high wave- 
numbers becomes opposite to that at small wavenumbers; this was not explained 
physically. Herring deduced the pressure-strain correlation from a balance between 
the time derivative of the energy, the nonlinear energy transfer and the rate of dis- 
sipation of energy. 

In  the present paper we also study axisymmetric turbulence as defined by some 
appropriate initial conditions. However, since we have access to the pressure fluctua- 
tions themselves, we are able to compute the pressure-strain correlation directly. 
This allows us to evaluate the spectral distribution and provides more insight into 
what is going on, especially with respect to the ‘overrelaxation’. In  addition to 
Rotta’s proposal, we study the influence of anisotropic length scales, although success 
is marginal in this respect. Moreover, we evaluate the three constants appearing in 
Lumley & Khajeh-Nouri’s (1974) proposal. We find that only two of them can be 
assumed to be universal. 

Because of its technical importance, it would be helpful to have a method which 
allows the study of the impact of mean shear on homogeneous turbulence. This is not 
possible with the present scheme. However, we get some information about the 
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influence of mean shear by splitting the flow field into large- and fine-scale motions 
and using the spectral pressure-strain correlation. 

As we start from random initial conditions, statistical errors appear which can be 
overcome only by the very expensive generation of large ensembles. The Reynolds 
number is low, so that no inertial subrange (Batchelor 1959) exists. Moreover, we are 
unable to use the initial conditions used by Herring (1974) because the truncation 
errors they would cause would be too large. The resultant constant in Rotta’s model 
from the present simulations, however, is only slightly different from the values 
found by Herring. The return to isotropy in homogeneous turbulence with anisotropy 
induced by magnetohydrodynamical forces has been studied by Schumann (1  976). 

2. Run specifications 
We use exactly the same method as in I except for the initial conditions. The spectral 

code integrates the velocities Q&k, t )  as a function of time t for discrete values of the 
wavenumber vector k = {kl, k,, k3} = k,,,N, where N = {N1, N , ,  N,} are integer 
numbers with /NI < (242)a M 15-6. The pressure in wavenumber space is @(k, t ) .  The 
Fourier transforms are the real-space variables ui(x,  t )  andp(x, t ) ,  where x = (xl, x,, x,}. 
The computation involves 3Z3 points in real space. Periodic boundary conditions are 
used (‘box turbulence ’) with a periodic length L = Zn/kmin. 

The simplest anisotropic case is that of axisymmetric turbulence (Batchelor 1946). 
This case has been studied recently by Herring (1974). Using Herring’s notation, 
axisymmetric turbulence (with zero helicity) can be described by 

2 

a = l  
(.ELi(k, t )  Q j (  - k, t ) )  = C W(k, t )  e:(k) ej”(k), (1) 

where the brackets denote the ensemble average, 

el(k) = ( k x n ) / l k x n l ,  @(k) = kxel(k)/lkxel(k)l  (2) 

(3) 

and the @a are two arbitrary scalar functions. The axis of symmetry is n and we 
choose 

n = ( O , O ,  1).  

Isotropic turbulence is recovered if W(k, t )  = W(k, t )  = B(k, t ) / (4nk2) ,  where B (k, t )  
is the energy spectram. A method of generating Gaussian-distributed initial values 
for given values of W(k) is described in the appendix. It is a generalization of the 
algorithm given by Orszag (1969) for isotropic initial fields. The general form of the 
prescribed values of cDa(k) used here is 

@(k,O) = #“(lkl)B(lkl,0)/(4nk2) (01 = 1 , Z ) .  (4) 

&(k,O) = 16(2/n)tv~k~~,k2exp[-2(k/krn,,)2],  ( 5 )  

We consider four types of anisotropic initial fields (the details are given in table 1). 
Type A .  

with @(k) = 2, #2(k) = 0. 

In this case Q3(k, 0 )  is zero everywhere, whereas Ql(k, 0 )  and Q,(k, 0 )  have continuous 
non-zero spectra. This is not a two-dimensional initial state, since Ql(k, 0 )  and d2(k, 0) 
depend on all three wavenumber components. 
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@ ( k )  = 2, $2(k) = 0. 

In  this case the velocities are zero initially except for 6 l (k ,  0) and a2(k, 0 ) ,  which are 
non-zero in a spherical shell in wavenumber space. This case is referred to as the 
‘peak case ’. 

Type L. In  this case all velocities are non-zero and the energy spectrum is that given 
by ( 5 ) .  The initial field is constructed such that the mean-square values of all three 
velocity components are equal, but the length scales are different. These cases are 
used to test the hypothesis describing the influence of anisotropic length scales 
proposed by Schumann (1975). Here we use 

qP( I kl ) = 1 everywhere 

with 

and 

for case L1 
0.01 for lkl < kH 

3.61 for lkl > k ,  

3.61 for lkl < kH 
0.01 for lkl > kH 

for case L2. 

Here k ,  = 1.04301 k,,, is found from the condition 

Type U .  Finally, we consider the case which has zero viscosity and is in equilibrium 
in I kl space but is initially anisotropic. The equilibrium spectrum for zero viscosity 
is (Lee 1952) 

B ( k ,  0) = &# k& k2. 

We study two types of anisotropy: 

@ ( k )  = 2 ,  $z(k) = 0 (case Ul) ,  

+l(k)  = 0.04, qP(k) = 3.24 (case U 2 ) .  

Two different cases of types A and P ( A l ,  A2, and Pi, P 2 )  have been considered 
(the details are given in table 1) .  The results presented for runs A1 and A2 are the m a n  
values taken over three independent realizations (ensemble means), each of which 
started from different random numbers with the same statistical properties. However, 
roughly 30 realizations would be needed in order to reduce statistical uncertainties 
below a desirable level for those statistics considered here. 

No cases with energy spectra of the form ke-k have been run because of the large 
truncation errors found for the corresponding isotropic case 13  in I. This, however, 
restricts the possibilities of direct comparison with Herring’s (1974) results, for which 
this type of spectrum was used. However, direct comparisons showing good agreement 
are presented in Schumann & Herring (1  976). The transition from a Gaussian initial 
state to a fully developed turbulent flow is discussed further in that paper. 
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3. Definition of statistics 

ponents of the Navier-Stokes equation in wavenumber space (see I, for example), 
We compute the dyadic product between the velocity vector u(k, t )  and the com- 

(9) aa,lat - vk=a, = +, 
(v is the kinematic viscosity and +,(k, t )  includes the inertial and pressure forces), and 
sume over shells around the origin in wavenumber space. This results in 

aBij/at = P, + 6,, - 8,,. (10) 
A 

This equation expresses the contributions of the inertia-transfer rate rij, the pressure- 
strain rate &sj ,  and the viscous dissipation rate Zij to the variation of &,, the tensorial 
energy spectrum. These terms and the pressure spectrum p are computed from 

&,(k) &j( - k), ( 1  1 a )  

2vk2&i(k) &j( - k), ( l i b )  

k,(k).P,(-k)+Gj(k)+c( -k), ( I l c )  

- i(k, &,(k) + 4 &,(k)) P( - k), ( 1  1 4  

fw 8( - w. (lie) 

Here Ak = +kmln. The transfer tensor Ygj contains the contributions of both the 
inertial and the pressure forces. The strictly inertial energy transfer is found from 

A 

r i j (k ,  t )  = Ygj(k ,  t )  - &i,(k, t).  ( 1 2 )  

If we contract the diagonal components, the pressure-strain contribution vanishes 
and we get the scalar equation 

( 1 3 )  aBpt = F -8, 

where 

and 

B ( k , t )  = +Bii(k,t), Z(k, t )  = &(k,t )  
A 

?(k, t )  = +Tdi(k, t )  = +Fii(k, t ) .  

We use the convention that repeated subscripts are summed from one to three. If we 
sum over all wavenumbers k ,  we get the real-space balances 

aEijlat = Q ~ ,  - cij ,  aE/at = - e ,  (14 )  

where Esj s ( u ~ u ~ )  = 2 Bij(k) ,  E = +Egg, 
k 

and 

We notice that Qij can be calculated from P i j ( k )  without knowledge of the pressure 
field, since the net effect of the inertial energy transfer vanishes (Batchelor 1959, 
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0 0.2 0.4 0.6 0.8 
t 

0 0.2 0.4 0.6 0.8 
t 

FIGURE 1. (a) Reynolds number and (a) skewness coefficient m. time. 
-, A l ;  --, A2; -.--,pi;. . . . . p2; -..-, L1; - _.- - , L2. 

equation 5.2.14). This fact has been used to check the program. In addition, we evaluate 
tensorial integral length scales and the mean values of the pressure gradients: 

v = (3E) t .  

We define, as usual, the Reynolds number Re, = (vh)/v, where A2 = 15vv2/s is the 
Taylor microscale, and compute the skewness coefficient 

8 = &[16v/c(t)]#E k2?(k), 
k 
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which for isotropic turbulence is equal to - ((au,/a~~)~)/((au1/8~1)~)8 (Orszag & 
Patterson 1972a, b).  

4. Time evolution of the anisotropic runs 
The Reynolds number Re,(t) and the skewness S(t)  are plotted vs. time in figures 

1 (a )  and (b).  The decrease in the skewness for 0.1 ,< t < 0.4 indicates some truncation 
errors for run A2, as described for the isotropic cases in I .  At the cost of lower Reynolds 
numbers, truncation has been avoided in cases P I  and P2.  The corresponding results 
for U1 and U2, which have infinite Reynolds numbers and zero skewness S, are not 
shown in these figures. 

Typical plots of the time evolution are given in figure 2 for run A2, where the 
energy of the 3-component is zero initially. The return to isotropy can be clearly seen 
from the plots of Eij,  cii, Lij and ((ap/axi) (ap/axj)) vs. time t. For i = j = 3 we see a 
small increase during an initial phase (t < 0.05); the increase then becomes steeper 
between 0.05 ,< t Q 0.3 and the viscous decay finally becomes dominant. We see that 
the return to isotropy is slow for L,,, stronger for Eij  and strongest for eij and the 
mean-square pressure gradients. (The mean-square value of the pressure gradient in 
the 3-direction is non-zero a t  time t = 0 because the velocities u1 and u2, and thus the 
pressure, are functions of x3 a t  this time.) Thus the return to isotropy is strongest for 
those quantities which depend mainly upon the high wavenumber range. This return 
to isotropy is due to the pressure-strain correlation, which is also plotted in figure 2. 
We see that all and @22 are negative, whereas a,, is positive and the contraction is 
zero. These terms represent, therefore, the energy transfer from the 1- and 2-corn- 
ponents to the 3-component. It is important to note that the aji are zero initially. 
Finally, figure 2 contains the normalized r.m.s. pressure fluctuation. This quantity is 
larger than one initially and decreases during the initial phase to settle between 0.9 
and 1.  Similar results were found for all the other runs (figure 3). For isotropic tur- 
bulence we found (I) values between 0.8 and 1.0 for all times. This is in contrast to the 
findings of Kraichnan (1956), who predicted that, for a given kinetic energy, isotropic 
turbulence produces higher pressure fluctuations than anisotropic turbulence. 

Corresponding spectra at different times t are plotted in figures 4 and 5 (a )  and (b) .  
Figure 4 shows results which are very similar to those described for isotropic turbulence 
in I. Figures 5 (a)  and ( b )  show the departure from isotropy A&33(k, t ) ,  where 

h h 

the pressure-strain correlations Qij and the energy transfer rij by the inertial terms 
for two runs. Of special interest is figure 5 (a), which shows the results for run P2.  As 
for the pressure in figure 4, we see that the pressure-strain correlation is distributed 
over a much broader wavenumber band than is the energy. This difference is explained 
by the fact that the pressure at some wavenumber k is a consequence of the interaction 
of velocities at k' and k ,  where k = k' + k .  Also, the maximum pressure-strain rate 
occurs a t  higher wave%umbers than the maximum departure from isotropy; and the 
inertial tranEfer rates rij are just as anisotropic as the energy components Eij in the 
sense that I Fiji is proportional to IBijI. It follows that the inertial transfer tends to 
create anisotropy a t  wavenumbers that are somewhat higher than the wavenumber 
a t  which the initial anisotropy dominates. 
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1.4 I I I 1 

^I 

0.6 

0.4 

0.2 

0 0. I 0.2 0.3 0.4 
I 

FIGURE 3. Normalized r.m.8. pressure fluctuations 98. time. -, A1; 
-- , A2; -1- , p1;. . . . . p2; -..- L1; --.--, L2; ---- , u1. 

1 1 1 1 1 1  

0.45 - 
0.40 - 
0.35 - t 

0 5 10 15 20 25 30 0 5 10 15 20 25 30 

-0.25 

0 5 10 15 20 25 30 0 5 10 15 20 25 30 
k k 

FIQURE 4. Spe_ctral distribution cjf (a) the kinetic energy $(k, t), (b) the pressure $(k, t ) ,  (6) the 
transfer rate T(k,  t )  and (d) the dissipation E(k, t )  v8. wavenumber for run P 2  a t  times t = 0, 0.1, 
0.2,0*3 and 0.4. Arrows indicate increasing time. 

The ratios r,,(k, t )  = @,,(k, t)/~!&,(k, t )  an4 r2,(k, t )  = @22(k, t) /&,(k,  t )  between the 
energes of different velocity components are illustrated in figures 6 and 7 (a)-(c). The 
degree of departure from axisymmetry due 40 statistical errors is seen from the ratio 
rZ1 in figure 7. The return to isotropy can bd seen from r31. We see that r31 generally 
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(b) 

FIGURE 5 .  Departure from isotropy of the kinetic energy tensor, pressure transfer, and inertial 
transfer for the 1 and 3 components as a function of wavenumber k at times (a) t = 0, 0.1, 0.2,  
0.3 and 0-4 for run P 2  and (b)  times t = 0, 0-16, 0.32, 0.48, 0.64 and 0.80 for run A l .  Arrowe 
indicate increasing time. 
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-* 

O k  

- I  

0 !i- 

( h )  0’1 
3 

FIGURE 6 .  Energy ratios ws. wavenumber ( k  = K )  and time (t = T) for run A l .  
The crosses denote unity. 3 < k < 31, 0 6 t < 0.8. (a) ,??33/,??11. (b)  Baa/&. 

tends to approach the ‘isotropic’ value one and that this tendency is, a t  least initially, 
stronger at higher wavenumbers than at  lower ones. This tendency shows the effect 
of the inertial and pressure transfer terms only; it is not influenced by the viscous 
dissipation directly. This can be seen from 

ar31 - ‘11 - ‘@33 
at 

Since the contribution to aBij/at produced by the dissipation is vk2Bij, there is no 
variation of r3,. In  other words, the ratio between the energy components would not 
change if there were viscous dissipation only. 

However, some tendency away from the isotropic state can be seen for cases P1 
and P2 in figure 7 ( b ) .  Here we see that rS1 approaches the value one only in the region 
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of the initial energy peak. Outside this region, r,, tends to deviate from the isotropic 
state, especially for the first time steps. Later on, the variation of rSl becomes smaller 
and we expect that it will return to one after some time^This effect can be explained 
as due to the anisotropy in the inertial energy transfer rij(k, t ) ,  which creates aniso- 
tropy in those regions where the energy is much smaller than in the peak region. If we 
substitute (10) into (19) and assume gll (k)  m 8.&) for this high wavenumber region, 
we get ar,l/at z (f, + &, - Fll - &ll) /~ l l .  

From <f?, = 0 and Qll = 6'' it follows that 
A h 

(20) 
A A 

ar31/at Cp33 $- @33- p11)/811* 
A 

Here all quantities are positive. If I'33 2: 0, we see that r3, decreases if rll > Q@, 
and this is true for cases P1 and P2 at high wavenumbers (see figure 5a).  

On the other hand, Herring (1974) found just the opposite effect in his simulations 
using the direct-interaction approximation: with r,, < 1 everywhere initially, he 
found that r3, became larger than one a t  high wavenumbers and remained smaller 
than one a t  low wavenumbers.? The important difference between Herring's simulation 
and the present one lies in the fact that his initial spectrum is proportional to e-k a2d 
thus decreases much more slowly than the spectra considered hereiIn t&s case, 
is not zero a2d the pressure-strain correlation is larger, so that @D3, + becomes 
larger than rll at high wavenumbers. In  this case, it follows from (20) that ~ 3 1  in- 
creases, which explains the overrelaxation at  large wavenumbers. However, in both 
cases the energy content a t  high wavenumbers is small, so that in the overall be- 
haviour (E33/Ell) such an overrelaxation does not appear. 

We saw that the pressure-strain correlation tends to be large at wavenumbers that 
are larger than those where the maximum anisotropy exists. To quantify this finding, 
we calculate the correlation coefficient 

and determine the value ymax of the factor y for which K ( y )  takes its maximum value. 
ymax is then a measure of the ratio of the wavenumbers at  which the pressure-strain 
correlation is significant to those a t  which the anisotropy is dominant. From (11) 
it follows that ymax = 1 if the velocity field is non-zero only in a thin shell in 
wavenumber space. Otherwise, ymsx is less than 1.  From the simulations we find 
ymax = 0.7 0.2, which indicates that the pressure-strain correlation at  some wave- 
number is the result of the anisotropy at  a wavenumber that is smaller by about a 
factor of 0.7. 

Finally, it should be noted that the return to isotropy exists even in the inviscid 
equilibrium cases U1 and U 2 ;  this can be seen for run U 2  from figure 8. Here, again, 
@33 is zero initially. 

t Actually, Herring plotted the ratio R G E, /E ,  = W/Q1. From equation (A 2) in the appendix 
(assuming iD' and Qz to be functions of Ikl only) it follows that rs1 & 4R/(3 + R). This means that 
r3, = 1 if R = 1 and the departure from one i, of the same sign as (1 -rsl) (1 -R) 2 0. (The 
assumption of angular invariance of W(k) has been made by Herring for most of his runs.) 
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0 0.10 0.20 0.30 0.40 

I 

FIQURE 8. Kinetic energy Eij and pressure-strain correlation Qi, 'UB. time t for 
runu2 .-,( i , j ) = ( l , l ) ; . . . . . .  , (id = (2 ,2) ;  -- , ( id) = (3 ,3) .  

There are two reasons why the pressure-strain correlation is zero initially. First, 
the initial velocity field is Gaussian and triple velocity correlations are consequently 
zero. The pressure-strain correlation can be expressed as a function of the velocity 
field (using, for example, Uberoi's (1953) theory): 

We see that Qij is zero if the triple Correlations are zero. Non-zero triple correlations 
are produced by the dynamics of the flow. Those triple correlations which determine 
Qij are different, however, from those describing the inertial energy transfer from 
small to large wavenumbers. For axisymmetric turbulence the triple correlations can 
be expressed as a function of five independent scalar functions (Batchelor 1946). 
Only one of them determines the skewness coefficient S. The skewness is zero for cases 
U1 and U2,  and this shows the independence of the inertial energy transfer to larger 
wavenumbers from the energy transfer between the different velocity components at  
fixed scalar wavenumbers. The second reason for zero initial values of @ . . is kinematic 
in nature. The correlation Qii is zero by definition if aui/ax, + auj/ax, is zero every- 
where. In  most runs we start with us 3 0 and therefore au3/ax3 = 0, which results in 

43 
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zero @33 values. Because of symmetry and continuity we also have Ql1 = 5 0. 
This shows that we have to expect a decrease in the pressure-strain correlationsfor very 
strong anisotropies for kinematical reasons. 

U. Schurnann and G .  S. Patterson 

5. Discussion of empirical models for the pressure-strain correlation 
5.1. Rotta’s model 

Rotta (1 951) proposed a simple relationship between the pressure-strain correlation 
aij and the departure from isotropy AE,, which can be expressed in one of the two 
following forms (also considered by Herring 1974) : 

or 

(23) 

(24) 

where Lf is defined by (15), AEij = - (Ei,- +Sij E,,), (25) 

and c and cf are expected to be positive constants of order unity. These forms are 
equivalent if e = (c‘E4)/(cLf), which is true only in the limit of very high Reynolds 
number and for steady flows (see I) .  The Rotta model assumes that the pressure-strain 
correlation is kinematically determined by the departure from isotropy (see Rotta 
1951, figure 2). We have shown above, however, that this is not true. On the other 
hand, Rotta’s model does not account for the kinematical constraint that Qii = 0 if 
&/axj + auj/axi = 0. Rotta’s model is therefore valid only if the flow is steady and if 
the departures from isotropy are small. 

We determine c and c‘ (which are called ‘constants’ and assumed to be independent 
of i andj )  by a least-squares fit, so that 

3 3  

i=lj=1 
2 2 [Qcj( t )  - @z( t ) ]2  = minimum. (26) 

Here @$ is the value given by the right-hand side of either (23) or (24). The resultant 
functions c ( t )  and c ’ ( t )  are plotted vs. time t for several runs in figure 9. The initial phase 
during which the triple correlations are built up is clearly reflected in the fact that 
c ( t )  and c’( t )  are zero initially and grow rapidly to some value of order unity. If we 
compare the time evolution of these ‘constants’ with the time evolution of the 
skewness S(t) (figure 1 b ) ,  we see that the times needed to establish the triple correla- 
tions for the energy transfer and the pressure-strain correlation, respectively, are 
about the same and of order 0.2 L,/v. This is especially evident for runs A1 and A2, 
which have different time scales. 

Using (26) but summing in addition over all times t > 0.2 Lf/v, we get mean values 
for the constants c and cf that are characteristic of the complete run. These are listed 
in table 2 together with the resultant r.m.s. errors: 

We see that these errors are very large for the approximately isotropic runs I1-I4 
described in I .  I n  these cases the systematic departure from isotropy is small com- 
pared with statistical fluctuations. Moreover, the sign of the anisotropy might change 
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0 

0.5 

0 0.2 0.4 0.6 0.8 
I 

FrauRE 9. Rotta's constants c and c' v8. time. -, A l ;  -- , ,  A2* -.- ,Pi; 
...... , P2;  ---, U1; --.--, U2 (c = co for U1 and 772). 

Run C C' s 6' 

I1 
I2 
I 3  
I 4  
A l a  
A l b  
A l c  

A1 

A2a 
A2b 
A2c 

A2 

P1 
P 2  
L1 
L2 
u1 
u 2  

0.038 
-0.157 
- 0,422 
- 0.395 

1.89 
2.13 
2.03 

2-06 

1.48 
1.37 
1.35 

1.41 

0.536 
0.376 
1.34 
3.78 
co 
co 

-0.112 
- 0.207 
- 0.539 
- 1.45 

0-752 
0.7 80 
0.779 

0.787 

0.837 
0.761 
0.782 

0-799 

0.545 
0.550 
0.613 
1.20 
0.635 
0435 1 

0.9998 
0.991 
0.919 
0.747 
0.295 
0.190 
0.239 

0.148 

0.143 
0.211 
0.144 

0.148 

0.178 
0.121 
0.770 
0.312 
1.000 
1.000 

0.995 
0.971 
0.921 
0.747 
0.378 
0.177 
0.317 

0.237 

0-095 
0.163 
0.067 

0.084 

0.223 
0.234 
0.800 
0.191 
0.166 
0.180 

TABLE 2. Rotta's constants c and c' and r.m.8. errors 8 and 6' (see $5.1). 

during the run. In  order to balance this anisotropy, the triple correlations appearing 
in (22) must change their sign. This change takes some time, during which and 
bEii can have opposite signs, which explains the negative values we find for c and cf 
in these cases. 

The errors are much smaller for the runs with large anisotropies. The smallest errors 
appear for runs A1 and A2. If these are compared with the results obtained for the 
three realizations (a,  b,  c )  we see the importance of ensemble averaging. However, we 
find that the quadratic errors for the ensemble means are larger than one-ninth of the 
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sum of the quadratic errors for the single runs. This indicates that these errors are 
in fact composed of statistical fluctuations and systematic deviations. For these runs 
the systematic errors are smaller than 0.1.  It is important to note that the values of 
the constants found for a single realization are not systematically different from those 
found for the ensemble mean values; we can therefore assume that the results will 
not change very much if we average over larger ensembles. Figure 9 and table 2 show 
that the value of c' is less dependent upon the initial values than the value of c. The 
characteristic time scale of the return to isotropy is therefore Lf/E3 rather than El&;  
this is especially evident from runs U1 and U2,  where c = co. This result was also 
obtained by Herring (1974).  It is a reasonable finding, since the pressure-strain 
correlation is large in the energy-containing region, which does not contribute to 
the dissipation directly. We find a mean value c' M 0-7 -t 0.2,  which is about 20 yo 
smaller than the values found by Herring (1974).  This difference may result from the 
restricted number of modes retained in Herring's model (discussed in Schumann & 
Herring 1976). For the other model the value of the factor c varies between 0.4 and 3.8. 

5.2. Effect of scale anisotropy 

Schumann (1975) has investigated high Reynolds number channel flows and cal- 
culated the pressure-strain correlation as well as the ' constant ' c. He found different 
values for c depending on the subscripts i and j of Qij. He gave some arguments that 
explained this result by the anisotropy in the length scales: if for any component of 
AEij and Qii ( i  = j )  the corresponding value of L, is large, then the resultant value of 
c is small. In order to test this hypothesis we ran cases L1 and L 2 .  Here the L,, are 
strongly anisotropic. (At t = 0, we have L,, = L,, = 0.36 and L,  = 0.59 for L1 and 
L,, = L,, = 0.68 and L,, = 0.42 for L 2 ;  these values do change, but only by 0.05 
during the run until t = 0.4.)  However, we cannot expect different values of c for 
different values of i and j since, in the axisymmetric case, we have all = @,, = - 
and AE,, = AE,, = - iAE,,, which implies that c is independent of i and j (i = j ) .  

the influence of the length-scale anisotropy. We experimented with 
We have been unable to find any empirical correlation that satisfactorily describes 

and 

The correlation coefficient between AEij and ALii, the reciprocal of which appears 
in the second proposal, is very near to one in all the runs considered here. It does not 
change the predicted value of appreciably if (29 )  is used. Also the values of c' and 
c* are not independent in these cases. Many more different wavenumbers k must be 
included in the simulation in order to allow independent variation of ALij and AE,,. 



The return to isotropy of axisymmetric turbulence 729 

Run A1 A2 Pi P2 U1 u 2  

Ca - 4.25 - 2-00 - 4.04 - 6.41 - 1.56 - 2.45 
C1 1.24 0.977 1.08 1.44 0.761 0-848 

s 0-146 0.050 0.170 0.083 0.101 0.089 

TABLE 3. Conatants appearing in the model of Lumley & Khajeh-Noun (1974); 
c3 = 0 (see 55.3). 

5.3.  Evaluation of the proposal of Lumley & Khajeh-Nouri 
Another proposal for refining Rotta’s model based on purely formal arguments is that 
of Lumley & Khajeh-Noun (1974): 

We use T = Lf/E* and AE,,. is defined in (25). The value of c, was found to be de- 
pendent upon the sign of the anisotropy : cQ is negative for runs A1, A2, Pl, P 2  and U1, 
which all start with E,, < El l ;  it  is positive for U2,  where E,, > Ell .  The last term in 
(30) is quadratic in AEii and does not change sign if the sign of AEii is changed, whereas 
sgn Qij = sgn AEij for the steady state. The factor c, does not seem to have a universal 
value. This might change if we expand the model such that the highest-order term is an 
odd function of AEij. Here we set c3 = 0. Using similar arguments, Reynolds (1974) 
came to the same conclusion. The values of c1 and c,, as found by a least-squares fit, 
are given in table 3 together with the r.m.s. error 6 computed from (27), using Q$ as 
defined by (30). We get negative values of c2, which means that the rate of return to 
isotropy decreases if the departure from isotropy becomes large. Using E& < E ,  Eij 
for j =k i (without summation) it is easy to show that II/(2E)2 < 8. This relationship 
holds for any anisotropic turbulence. In  order to ensure a positive correlation between 
Qij and AEii for any possible value of II/ (2E)2,  we therefore require 

c,  2 -#c l ,  c1 > 0.  (31) 

For axisymmetric turbulence, we find II/(2E)2 = $ if Ell  = E,, = 0,  E,, > 0. In this 
case au3/ax3 is also zero, so that all components of the pressure-strain correlation are 
zero. Therefore it might be appropriate to require c, = - $cl. Table 3 shows that the 
empirical values of c2 are even smaller than is required by (31). This is allowed if the 
departure from isotropy is so small that c1 + c, II/(2E)2 > 0. However, a generally 
acceptable model seems to be (30), with c1 = 1.0, c2 = - 1-5 and c,  = 0. 

In  spite of our analysis, it is still possible that the rate of return to isotropy might 
be relatively larger for small departures from isotropy. This is suggested by the 
experimental results of Tucker & Reynolds (1968).t We cannot exclude or confirm 
this possibility since the statistical errors become prohibitive for small departures from 
isotropy. Such changes in the value of Qij for small and large values of I1 could be 
accounted for by adding a term proportional to (II/(2E)2)2AEij/T to (30) .  

t This fact has been pointed out to u0 by one of the referees. 
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5.4.  Local wavenumber dependence of Rotta’s constant 
I n  order to see the wavenumber dependence of Rotta’s ‘constant’ we define a C(k) by 

Here all quantities are functions of k and t. Again we determine C(k) by a least-squares 

fit, requiring 3 3  
2 [ 6 c j ( k ,  t )  - @$(k, t )I2 = minimum, 

t i=lj=l  

where @$(k, t )  is the value predicted by (32 ) .  We sum over all time steps t where t is 
larger than 0 .2Lf / v  in order to allow the formation of triple correlations. The resultant 
values of C(k) are plotted in figure 10. The peak cases P1 and P2 show that C(k) is 
small where the main anisotropy occurs but larger at some higher wavenumbers which 
reflect the shift in wavenumber space between A g i j  and $+j. A general decreasing 
tendency for increasing wavenumbers can be seen. 

5.5.  Fine-scale motion and effects of strain 

Several authors (e.g. Rotta 1951; Reynolds 1976; Naot et al. 1970; Hanjali6 & Launder 
1972; Rodi 1972; Shir 1973) have proposed extending the models for the pressure- 
strain correlation by terms accounting for strain and for the resulting anisotropy in 
the different production terms contributing to the time variation of Ei j .  I n  the present 
runs the mean production terms are zero. However, if we split our flow field into two 
parts, one containing the large-scale motion defined by Ik/ < k, and the other the 
fine-scale motion (I kl > k,), where k, is some arbitrary positive wavenumber, we may 
investigate the pressure-strain correlation for the fine-scale motion where the pro- 
duction terms are no longer zero. 

We define fine-scale quant,ities y ’ ( k )  by 

where y stands for Oij, Eii, rii, etc. The int,egral length scale Lf(k,) of the fine-scale 
motion is 

If we use Rotta’s model (24 ) ,  we find that the appropriate value of c‘ increases 
strongly with growing k ,  and the errors 6’ become large. I n  order to get a value of C‘ 

independent of k, and to reduce the errors we should account for the anisotropic 
production Tii. We use the proposal of Naot et al. (1970) and Rodi (1972): 

where all quantities are functions of k, and t. By a least-squares fit we determine 
~ 3 ( k o )  and c4(k,). The results for run A2 (the run with the smallest statistical errors) are 
given in table 4 .  Here, again, S is the r.m.s. error. The results for very small wave- 
numbers are not listed in this table as r;, is small here and the results for c4 would 
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FIUURE 10. Local Rotta constant ? ( k )  'us. wavenumber k for different runs. 
-,Al;--,A2; -.-, p i ;  ...... , P2. 

kLl 

8 
10 
12 
14 
16 
18 
20 
22 
24 
26 
28 
30 

C1 

0.939 
1.174 
1.735 

0.042 
0.721 
1.16 
1.61 
2.07 
2.35 
1.94 
0.35 

- 0.736 

C2 

0.824 
0.596 
0.372 
1.16 
0.785 
0.603 
0.524 
0.468 
0.406 
0.377 
0.4 16 
0.468 

6 

0.072 
0.079 
0.066 
0.065 
0.054 
0.077 
0.095 
0.109 
0.125 
0.149 
0.172 
0.216 

TABLE 4. Effects of anisotropic energy prodiiction (see 3 5.5). 

therefore not be significant. The value c3(k,) is identical to c' in the limit k, = 0. We 
find that for small wavenumbers k, the pressure-strain correlation is controlled by 
AEii. For large wavenumbers, however, the production terms become dominant. 
Although the scatter in c3 and c4 is large owing to statistical fluctuations, we see that 
both are nearly independent of k,. Typical values are c3 x 0.7 (which corresponds 
to c')  and c4 % 0.6. Naot et a l .  (1970) used c3 = 0 and deduced c4 to be between 0.66 and 
0.8 from different experiments; Rodi (1972) used a value c4 = 0.5. These values agree 
surprisingly well with the numerical results. 
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6.  Summary 
We have used the spectral method of Orszag & Patterson (1972a, b )  as extended 

in I for the direct numerical simulation of pressure and velocity fluctuations in three- 
dimensional space. In  this paper we considered axisymmetric homogeneous decaying 
turbulence with Re, 5 40 (except for runs U l  and U2,  where Re, = 00). We described 
several runs with different axisymmetric (highly anisotropic) Gaussian initial con- 
ditions. The numerical results are summarized in table 5.  The main limitations of the 
present runs are statistical fluctuations in the mean values obtained for one realiza- 
tion. They can be reduced by averaging over ensembles of realizations as we did for 
two cases. The statistical uncertainties for the value of Rotta’s constant are of the 
order of 20 yo for the present single realizations. They would be much larger if we con- 
sidered small initial anisotropies because then the departure of isotropy would 
become small compared with the statistical fluctuations. 

Spectral as well as mean values of the different correlations governing the time 
evolution of the tensorial energy components are shown. As expected, we found that 
the pressurestrain correlation causes the return to isotropy. The return to isotropy 
is, however, not determined kinematically; rather, it depends upon triple correlations 
that are created by the flow dynamics. Although these triple correlations are inde- 
pendent of the skewness S, both vary on about the same characteristic time scales. 

With respect to the spectral distribution of the pressure-strain correlation, we 
found that at  some wavenumbers this correlation is the result of the anisotropy a t  a 
wavenumber that is smaller by a factor of 0 .7+0 .2 .  The spectral distribution is, 
moreover, much broader than the kinetic energy distribution; the same is true for the 
pressure spectrum. The rate of return to isotropy is larger a t  high wavenumbers than 
at low wavenumbers. 

The inertial energy transfer rate has been found to be anisotropic and proportional 
to the anisotropy of the energy tensor. This transfer rate tends to produce anisotropy 
a t  high wavenumbers, therefore. Whether we get an overrelaxation to an anisotropic 
state of opposite sign depends upon the relative magnitude of the pressure and 
inertial transfer. If the latter is smaller than the former, no overrelaxation occurs. 

Rotta’s model is appropriate if the characteristic time scale of the total flow is 
larger than 0.2 Lf/v ,  which is the time scale for the triple correlations. Moreover, the 
departure from isotropy must be small enough since Rotta’s model does not account 
for the kinematical constraint, <D,* = 0 if aui/axj+auj/axi = 0. Moreover, the length 
scales Lij should not depart from the isotropic state more than does Eii. Finally, we 
confirmed Herring’s (1974) result in that the constant c‘ in (24) is less dependent than 
c in (23) upon the initial conditions. The resultant value of Rotta’s constant is c’ N 0.8, 
which is about 20 % less than the value found by Herring (1974). However, this is not 
a large difference in view of the simplifying assumptions used by Herring (see also 
Schumann & Herring 1976). If we use the relation between the dissipation and E*/L, 
(as given in I), (24) can be incorporated into semi-empirical turbulence models. For 
large Reynolds numbers (23) is appropriate with c = c’/B, (B,  2: 0-7 according to I), 
resulting in c N 1.1.  

No conclusive result was obtained for the influence of anisotropies in the length 
scales. With respect to the proposal of Lumley & Khajeh-Nouri (1  974), we suggested 
dropping the highest-order term; we also found a relationship that should be obeyed 
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Time 

0 
0.2 
0.4 
0.8 

0 
0.2 
0.4 
0.8 

0 
0-2 
0.4 
0.8 

0 
0.2 
0.4 
0.8 

0 
0.2 
0.4 
0.8 

0 
0.2 
0.4 
0.8 

A1 

1.545 
1.265 
0.976 
0.567 

0 
0.168 
0.312 
0.353 

0 
1-272 
0.858 
0.379 

0.958 
0.912 
0.890 
0.576 

0 
0.238 
0444 
0.446 

0.592 
0.554 
0.538 
0.537 

A2 

1.485 
0.884 
0.763 
0.210 

0 
0.246 
0.236 
0.129 

0 
1 *395 
0.444 
0.071 

2.479 
1.878 
1.103 
0.342 

0 
0.906 
0.>?40 
0.264 

0.27 1 
0.276 
0.292 
0.345 

Pi 

1.015 
0.565 
0.295 

0 
0.076 
0.078 

0 
0.553 
0.187 

- 

- 

- 

2.462 
1.564 
0.827 

0 
0.340 
0.288 

- 

- 

0.592 
0.314 
0.331 
- 

P 2  L1 

1.037 1.062 
0.273 0.859 
0.080 0.638 
- - 

0 1.250 
0.060 1.024 
0.028 0.755 
- - 

0 -0.656 
0.320 -0.185 
0.036 -0.333 
- - 

5.857 1.118 
1.710 1.291 
0.406 1.140 
- - 

0 0.786 
0.478 1.020 
0.144 1.004 
- - 

0.201 0.438 
0.208 0-421 
0.250 0.420 
- - 

L2 

1.334 
1.176 
0.989 
- 

0.996 
0.931 
0.825 

- 0.1 12 
0.536 
0.193 

- 

- 
0.582 
0.683 
0.820 
- 

0.674 
0.792 
0.932 
- 

0.587 
0.574 
0.552 
- 

u1 

1-525 
1.158 
1.061 

0 
0.759 
0.964 

0 
2.093 
0.438 

0 
0 
0 

0 
0 
0 

0.111 
0.112 
0.113 

- 

- 

- 

- 

- 

- 

u 2  

0.830 
1-562 
1-745 

3.343 
1.946 
1.805 

- 

- 
0.139 

0.064 

0 
0 
0 

0 
0 
0 

0.111 
0.112 
0.113 

- 2.737 

- 

- 

- 

- 

TABLE 5. Numerical results for the tensorial energia Eij,  the pressure-strain correlations the 
dissipation eij  and the integral length scale L,. Note that all tensor components are zero for i + j  
and that the 11 components are equal to the 22 components; also all = QZz = - *az2. 

by the two replaining constants; some values for these constants have been proposed. 
By splitting the flow into large- and fine-scale motions we were able to obtain informa- 
tion abou6 the influence of anisotropic production terms; the results agree well with 
the pregctions of Naot et al. (1 970) and Rodi (1972). 

The authors thank Dr J. R. Herring for stimulating discussions and encouragement. 
He proposed the algorithm for generating the initial values. After completion of the 
present study we learned of a similar investigation by Dr Steven A. Orszag (private 
communication, unpublished.) This work was done while U. Schumann was with the 
Advanced Study Program a t  the National Center for Atmospheric Research, which is 
sponsored by the National Science Foundation. 
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Appendix. Generation of random axisymmetrically isotropic velocity fields 
We choose al(k), a2(k), b,(k) and b,(k) to be zero-mean Gaussian, independent, real, 

random, scalar fields such that 

A(k) = a,(k) +ia2(k), B(k) = bl(k) +ib,(k) 

A(k) = A*( - k), B(k) = B*( - k), have the properties 

B( - k)) = 0, 

(A(k)A( - k’)) = (B(k)B( - k’)) = 0 if k + k’, 

(A(k)A( - k)) = @l(k), (B(k)B( - k)) = @2(k). 

Then B(k) = A(k) el(k) +B(k) e2(k), (A 1) 

where el and e2 are defined by (2), is a Gaussian velocity field with zero mean and 

(iii(k) I;r( - k‘)) = 
2 @a(k)eS(k)cf(k) if k = k’, 

kiai(k) = 0. 

The components of the energy tensor gaj(k) are 

fiij(\k/) = k 2 S r  12= (Qi(k)Qj( -k))sinBdBdq5, 
o = o  $ = O  

where 

The resultant non-zero components are 

k = {sin I3 cos q5, sin I3 sin q5, cos O}. 

where we describe the angular dependence of W(k) by the Legendre moments (Herring 
1974) 
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